Characterization of natural organic matters using flow field-flow fractionation and its implication to membrane fouling
نویسندگان
چکیده
Transport and deposition characteristics of natural organic matter (NOM) are systematically investigated using flow field-flow fractionation (Fl-FFF) at various chemical and physical conditions. Humic acid (HA) was chosen as model organic foulants. Prior to Fl-FFF analysis, HA was fractionated by membranes with different molecular weight cut-offs. To elucidate physicochemical factors affecting the deposition and transport characteristics of organic foulants, various concentrations of NaCl (i.e. up to seawater level) and CaCl2 were employed as carrier solutions in Fl-FFF. Each fractionated NOM showed different transport and deposition characteristics with respect to the chemical and physical conditions employed during Fl-FFF analysis. When the total dissolved solids (TDS) concentration increased, there was more significant variation in the retention time for large NOM fractions compared with small NOM fractions. This means that the transport and deposition tendency of the larger NOM fractions varied more significantly with the alteration of ionic strength in Fl-FFF channel than the smaller ones. However, the smaller NOM fractions showed more considerable variation in retention time with increasing cross-flow intensity (i.e. flow perpendicular to channel flow in Fl-FFF) in Fl-FFF channel. This also means that the variation of physical factor could affect the transport and deposition tendency of the smaller ones more influentially. Results also elucidated that the retention time and area of elution peak of fractionated NOM were directly related to the amount of organic foulants attached to the membrane in Fl-FFF channel. It has been demonstrated that the deposition tendency of organic foulants increased at the higher TDS concentration, calcium concentration, and cross-flow intensity. This has been quantitatively determined using fouling index, Qf, derived from the data obtained from Fl-FFF. Based on this study, it is implied that Fl-FFF can be a useful tool to characterize the transport and deposition behavior of organic foulants in the solid–water interface and optimize pretreatment options for reducing membrane fouling.
منابع مشابه
Advanced Dynamic Simulation of Membrane Desalination Modules Accounting for Organic Fouling
A reliable dynamic simulator (based on a sound process model) is highly desirable for optimizing the performance of individual membrane modules and of entire desalination plants. This paper reports on progress toward development of a comprehensive model of the complicated physical-chemical processes occurring in spiral wound membrane (SWM) modules, that accounts for the...
متن کاملUltrafiltration of natural organic matter from water by vertically aligned carbon nanotube membrane
In this study vertically aligned carbon nanotubes (VA-CNT) was grown on anodized aluminum oxide (AAO) substrate. The synthesized AAO-CNT membrane was characterized using Raman spectroscopy, field emission scanning electron microscopy (FESEM), contact angle and BET. The pure water flux, humic acid (HA) (as representative of natural organic matters) rejection and fouling mechanism were also evalu...
متن کاملOptimization of a Membrane Filtration Process for Drinking Water Treatment Using Fluorescence-Based Measurements
Membrane fouling control is of paramount importance for sustainable operation of membranebased drinking water treatment processes. Natural organic matter (NOM) is considered as the major membrane foulant and therefore its characterization is important for implementing fouling control strategies. This study proposes a fluorescence-based modeling approach for estimating and predicting the fouling...
متن کاملThe Study of Organic Removal Efficiency and Membrane Fouling in a Submerged Membrane Bioreactor Treating Vegetable Oil Wastewater
The characterizations of vegetable oil wastewater (VOW) are unpleasant odor, dark color, and high organic contents, including large amounts of oil and grease (O&G), chemical oxygen demand (COD), fatty acids and lipids. Therefore, VOWs should be treated efficiently to avoid the environment pollution. The aim of present study was the investigation of VOW biological treatment using membrane biorea...
متن کاملCharacterization of Silver Nanoparticles under Environmentally Relevant Conditions Using Asymmetrical Flow Field-Flow Fractionation (AF4)
The development of methods to monitor manufactured nanomaterials in the environment is one of the crucial areas for the assessment of their risk. More specifically, particle size analysis is a key element, because many properties of nanomaterial are size dependent. The sizing of nanomaterials in real environments is challenging due to their heterogeneity and reactivity with other environmental ...
متن کامل